(本小题满分12分)已知向量,设函数
(Ⅰ)求在区间
上的零点;
(Ⅱ)若角是△
中的最小内角,求
的取值范围.
(本小题满分14分) 设函数,
.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若存在,使得
成立,求满足条件的最大整数
;
(Ⅲ)如果对任意的,都有
成立,求实数
的取值范围.
(本小题满分13分)如图,已知圆E:,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹的方程;
(Ⅱ)设直线与(Ⅰ)中轨迹
相交于
两点, 直线
的斜率分别为
(其中
).△
的面积为
, 以
为直径的圆的面积分别为
.若
恰好构成等比数列, 求
的取值范围.
(本小题满分12分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:;
.试分析这两个函数模型是否符合公司要求.
(本小题满分12分)如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.