游客
题文

一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球个数不少于白球个数的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设数列的通项是关于x的不等式  的解集中整数的个数.
(1)求并且证明是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,
请证明你的结论,如果不成立,请说明理由.

已知分别是直线上的两个动点,线段的长为的中点.
(1)求动点的轨迹的方程;
(2)过点任意作直线(与轴不垂直),设与(1)中轨迹交于两点,与轴交于点.若,证明:为定值.

如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径之间的夹角为.

(1)将图书馆底面矩形的面积表示成的函数.
(2)求当为何值时,矩形的面积有最大值?
(3)其最大值是多少?(用含R的式子表示)

如图,已知空间四边形中,的中点.

求证:(1)平面CDE;
(2)平面平面
(3)若G为的重心,试在线段AE上确定一点F, 使得GF//平面CDE.

已知复数,,且
(1)若,求的值;
(2)设,已知当时,,试求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号