从1,2,3,5,7这五个数字中任取2个,能组成多少个分数?多少个真分数?
已知曲线C的极坐标方程为,直线
的参数方程为
( t为参数,0≤
<
).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线
被曲线C截得的线段AB的长.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数上是减函数,求实数a的最小值;
(Ⅲ)若,使
(
)成立,求实数a的取值范围.
已知两点及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,点M在线段EC上.
(I)当点M为EC中点时,求证:面
;
(II)求证:平面BDE丄平面BEC;
(III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为时,求三棱锥M-BDE的体积.
在一次抢险救灾中,某救援队的50名队员被分别分派到四个不同的区域参加救援工作,其分布的情况如下表,从这50名队员中随机抽出2人去完成一项特殊任务.
区域 |
A |
B |
C |
D |
人数 |
20 |
10 |
5 |
15 |
(1)求这2人来自同一区域的概率;
(2)若这2人来自区域A,D,并记来自区域A队员中的人数为X,求随机变量X的分布列及数学期望.