某厂拟生产甲、乙两种适销产品,每件利润分别为300、500元,甲、乙产品的部件各自在A、B两个车间分别生产,每件甲、乙产品的部件分别需要A、B车间的生产能力1、2工时;两种产品的部件最后都要在C车间装配,装配每件甲、乙产品分别需要3、4工时.A、B、C三个车间每天可用于生产这两种产品的工时分别为8、12、36,应如何安排生产这两种产品才能获利最多?
(本小题满分12分)
用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
已知数列是首项
公比
的等比数列,设
,数列
满足
.
(1)求证:是等差数列;
(2)求数列的前n项和Sn;
(3)若对一切正整数
恒成立,求实数
的取值范围。
已知圆:
(1) 若平面上有两点(1 , 0),
(-1 , 0),点P是圆
上的动点,求使
取得最小值时点
的坐标.
(2)若是
轴上的动点,
分别切圆
于
两点
① 若,求直线
的方程;
② 求证:直线恒过一定点.
已知二次函数,不等式
的解集为
或
(1)求的值;
(2)若在[-1,1]上单调递增,求实数
的取值范围.
如图所示,四棱锥,底面
是边长为2的正方形,
,
,过点
作
,连接
.
(1)求证:.
(2)若面交侧棱
于点
,求多面体
的体积。