已知关于x的一元二次函数
(1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和
,求函数
在区间[
上是增函数的概率;
(2)设点(,
)是区域
内的随机点,求函数
上是增函数的概率.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆C的交点为O,P,与直线
的交点为Q,求线段PQ的长.
如图,、
、
是圆
上三点,
是
的角平分线,交圆
于
,过
作圆
的切线交
的 延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数,其中e为自然对数的底数,且当x>0时
恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.
(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;
(Ⅱ)在甲、乙两队全体成绩为“优秀”的运动员的跳高成绩的平均数和方差;
(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,
求所选取两名运动员均来自甲队的概率.