(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?
已知数列满足 ⑴证明:数列是等比数列; ⑵求数列的通项公式; ⑶若数列满足证明是等差数列.
已知为等差数列的前项和, ⑴当为何值时,取得最大值; ⑵求的值; ⑶求数列的前项和
已知为数列的前项和,,. ⑴求数列的通项公式; ⑵数列中是否存在正整数,使得不等式对任意不小于的正整数都成立?若存在,求最小的正整数,若不存在,说明理由.
设为数列的前项和,, ⑴求常数的值; ⑵求证:数列是等差数列.
已知等差数列中,. ⑴求数列的通项公式; ⑵若数列满足,设,且,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号