(本小题满分14分)如果对于函数的定义域内任意的,都有成立,那么就称函数是定义域上的“平缓函数”.(1)判断函数,是否是“平缓函数”;(2)若函数是闭区间上的“平缓函数”,且.证明:对于任意的,都有成立.(3)设、为实常数,.若是区间上的“平缓函数”,试估计的取值范围(用表示,不必证明).
如图,四棱锥中,底面为平行四边形,,,⊥底面. (1)证明:平面平面; (2)若,求与平面所成角的正弦值.
已知是二次函数,方程有两相等实根,且 (1)求的解析式. (2)求函数与函数所围成的图形的面积.
(本题12分)设函数在内有极值。 (1)求实数的取值范围; (2)若分别为的极大值和极小值,记,求S的取值范围。 (注:为自然对数的底数)
(本题10分)已知函数 (1)利用函数单调性的定义,判断函数在上的单调性; (2)若,求函数在上的最大值。
(本题10分) 已知(), (1)当时,求的值; (2)设,试用数学归纳法证明: 当时, 。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号