(本小题满分14分)如果对于函数的定义域内任意的,都有成立,那么就称函数是定义域上的“平缓函数”.(1)判断函数,是否是“平缓函数”;(2)若函数是闭区间上的“平缓函数”,且.证明:对于任意的,都有成立.(3)设、为实常数,.若是区间上的“平缓函数”,试估计的取值范围(用表示,不必证明).
已知双曲线C:2x2-y2=2与点P(1,2).求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;
已知椭圆的长轴长是短轴长的2倍且经过点A(2,0),求椭圆的标准方程。
在ABC中,已知,,,求.
已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率。 (I)求椭圆的方程; (II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标 为,求直线l的斜率的取值范围。
已知双曲线3x2-y2=3,过点P(2,1)作一直线交双曲线于A、B两点,若P为 AB的中点, (1)求直线AB的方程; (2)求弦AB的长
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号