已知数列和
满足:
,
,
,
其中为实数,
.
⑴ 对任意实数,证明数列
不是等比数列;
⑵ 证明:当,数列
是等比数列;
⑶设为数列
的前
项和,是否存在实数
,使得对任意正整数
,都有
?
若存在,求的取值范围;若不存在,说明理由.
某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 |
分组 |
回答正确的人数 |
回答正确的人数占本组的概率 |
第1组 |
[15,25) |
5 |
0.5 |
第2组 |
[25,35) |
![]() |
0.9 |
第3组 |
[35,45) |
27 |
![]() |
第4组 |
[45,55) |
![]() |
0.36 |
第5组 |
[55,65) |
3 |
![]() |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价![]() |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量![]() |
90 |
84 |
83 |
80 |
75 |
68 |
(1)根据上表可得回归直线方程中的
,据此模型预报单价为10元时的销量为多少件?
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)
随机抽取某中学甲班10名同学,他们的身高(单位:cm)数据是;乙班10名同学,他们的身高(单位:cm)数据是
(1)画出甲、乙两班的茎叶图,并说明茎叶图有什么优点和缺点?
(2)根据茎叶图判断哪个班的平均身高较高(不必计算).
函数请设计算法框图,要求输入自变量,输出函数值.
已知函数,函数
.
⑴当时,函数
的图象与函数
的图象有公共点,求实数
的最大值;
⑵当时,试判断函数
的图象与函数
的图象的公共点的个数;
⑶函数的图象能否恒在函数
的上方?若能,求出
的取值范围;若不能,请说明理由.