假设每一架飞机的引擎在飞行中出现故障的概率为1-P,且各引擎是否出故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就能成功运行;2引擎飞机中要2个引擎全部正常运行,飞机才能成功运行.要使4引擎飞机比2引擎飞机更安全,则P的取值范围?
已知向量,
,函数
.
(1)求函数的最小正周期;
(2)若,
,
是
的内角
,
,
的对边,
,
,且
是函数
在
上的最大值,求:角
,角
及
边的大小.
已知椭圆的焦点坐标为
,长轴等于焦距的2倍.
(1)求椭圆的方程;
(2)矩形的边
在
轴上,点
、
落在椭圆
上,求矩形绕
轴旋转一周后所得圆柱体侧面积的最大值.
(理)对数列和
,若对任意正整数
,恒有
,则称数列
是数列
的“下界数列”.
(1)设数列,请写出一个公比不为1的等比数列
,使数列
是数列
的“下界数列”;
(2)设数列,求证数列
是数列
的“下界数列”;
(3)设数列,构造
,
,求使
对
恒成立的
的最小值.
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列中,
(1)求证数列不是等比数列,并求该数列的通项公式;
(2)求数列的前
项和
;
(3)设数列的前
项和为
,若
对任意
恒成立,求
的最小值.
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数是定义域为R的奇函数.
(1)求k值;
(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.