一辆邮政车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设该车从各站出发时邮政车内的邮袋数构成一个有穷数列,
试求:(1)
(2)邮政车从第k站出发时,车内共有邮袋数是多少个?
(3)求数列的前k项和
并证明:
我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的数学期末考试成绩,分别为
甲班:.
乙班:.
(Ⅰ)作出甲乙两班分别抽取的20名学生数学期末成绩的茎叶图,依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.
如图,正三棱柱中,
是
的中点,
.
(Ⅰ)求证:平面
;
(Ⅱ)求点到平面
的距离.
已知单调递增的等比数列满足:
,且
是
,
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
.
在锐角中,
、
、
分别为角
所对的边,且
.
(Ⅰ)确定角的大小;
(Ⅱ)若=
, 且
的面积为
, 求
的值.
已知.
(Ⅰ)求的最小值;
(Ⅱ)若存在,使不等式
成立,求
的取值范围;
(Ⅲ)当时,证明:
.