游客
题文

某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司一致决定对该项目投资的概率;
(Ⅱ)求此公司决定对该项目投资的概率;

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知边长为1的正方形ABCD,沿BC旋转一周得到圆柱体。

(1)求圆柱体的表面积;

(2)正方形ABCD绕BC逆时针旋转 π 2 A 1 BC D 1 ,求 A D 1 与平面ABCD所成的角。

已知数集 A = { a 1 , a 2 , a n } ( 1 a 1 < a 2 < a n , n 2 ) 具有性质 P ;对任意的 i , j ( 1 i j n ) a i a j a j a i 两数中至少有一个属于 A

(Ⅰ)分别判断数集 { 1 , 3 , 4 } { 1 , 2 , 3 , 6 } 是否具有性质 P ,并说明理由;

(Ⅱ)证明: a 1 = 1 ,且 a 1 + a 2 + + a n a 1 - 1 + a 2 - 1 + + a n - 1 = a n ;

(Ⅲ)证明:当 n = 5 时, a 1 a 2 a 3 a 4 a 5 成等比数列。

已知双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的离心率为 3 ,右准线方程为 x = 3 3

(Ⅰ)求双曲线 C 的方程;

(Ⅱ)设直线 l 是圆 O : x 2 + y 2 = 2 上动点 P ( x 0 , y 0 ) ( x 0 y 0 0 ) 处的切线, l 与双曲线 C 交于不同的两点 A , B ,证明 AOB 的大小为定值。

设函数 f ( x ) = x e kx ( k 0 )

(Ⅰ)求曲线 y = f ( x ) 在点 ( 0 , f ( 0 ) ) 处的切线方程;

(Ⅱ)求函数 f ( x ) 的单调区间;

(Ⅲ)若函数 f ( x ) 在区间 ( - 1 , 1 ) 内单调递增,求 k 的取值范围。

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 1 3 ,遇到红灯时停留的时间都是2min。

(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间 ξ 的分布列及期望。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号