已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-
时,f(x)>0.
(1)求证:f(x)是单调递增函数;
(2)试举出具有这种性质的一个函数,并加以验证.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点
的直线的参数方程为:
(t为参数),直线与曲线C分别交于M,N.
(1)写出曲线C和直线的普通方程;
(2)若成等比数列,求a的值.
已知在中,D是AB上一点,
的外接圆交BC于E,
.
(1)求证:;
(2)若CD平分,且
,求BD的长.
已知函数.
(1)当时,求函数
的极值;
(2)若函数在区间
上是减函数,求实数a的取值范围;
(3)当时,函数
图象上的点都在
所表示的平面区域内,求实数a的取值范围.
椭圆过点
,离心率为
,左、右焦点分别为
,过
的直线交椭圆于
两点.
(1)求椭圆C的方程;
(2)当的面积为
时,求直线的方程.
某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,
, ,
后得到如图的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高一年级共有学生500人,试估计该校高一年级在这次考试中成绩不低于60分的人数.
(3)若从样本中数学成绩在与
两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率。