某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,
面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人
面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合
格互不影响,求:(I)至少有1人面试合格的概率;(II)签约人数的分布列和数学期望。
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高频数分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
频数 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求该校男生的人数并完成下面频率分布直方图;
(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185
190cm之间的概率。
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
已知函数(
),相邻两条对称轴之间的距离等于
.
(Ⅰ)求的值;
(Ⅱ)当时,求函数
的最大值和最小值及相应的x值.
已知是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若 ,是否存在
,有
?请说明理由;
(Ⅱ)若(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.