(本小题满分14分)在平面直角坐标系中,的两个顶点
的坐标分别是
,点
是
的重心,
轴上一点
满足
,且
.
(1)求的顶点
的轨迹
的方程;
(2)不过点的直线
与轨迹
交于不同的两点
.若以
为直径的圆过点
时,试判断直线
是否过定点?若过,请求出定点坐标,不过,说明理由.
(本小题满分14分)设函数.
(1)若函数在
上为减函数,求实数
的最小值;
(2)若存在,使
成立,求实数
的取值范围.
(本小题满分13分)已知椭圆(
)的左、右顶点分别为
,
,且
,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.
(本小题满分12分)已知单调递增的等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
成立的正整数
的最小值.
如图,在三棱锥中,平面
平面
,
于点
,且
,
,
(1)求证:
(2)
(3)若,
,求三棱锥
的体积.
(本小题满分12分)某市统计局就某地居民的月收入调查了 10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1500)).
(Ⅰ)求居民收入在[3 000,3 500)的频率;
(Ⅱ)根据频率分布直方图算出样本数据的中位数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000 人中按分层抽样方法抽出 100 人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?