(本小题满分12分) 已知单调递增的等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
成立的正整数
的最小值.
(本小题10分)
解不等式|2x-1|<|x|+1.
(本小题10分)在平面直角坐标系xoy中,设P(x,y)是椭圆上的一个动点,求S=x+y的最大值。
(本小题10分)
如图,已知AP是O的切线,P为切点,AC是
O的割线,与
O交于B,C两点,圆心O在
PAC的内部,点M是BC的中点。
(1)证明:A,P,O,M四点共圆;
(2)求OAM+
APM的大小。
已知二次函数。
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问是否存在常数t(t≥0),当x∈[t,10]时,f(x)的最大值与最小值之差为12-t。
函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时为增函数,且f(1)=0。
(1)求关于t的方程f(2t+5)=0的解;
(2)求不等式f[x(x-)]<0的解集。