从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加
.
(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;
(2)至少经过几年,旅游业的总收入才能超过总投入?
(本小题满分13分)如图,四面体ABCD中,O是BD的中点,ABD和
BCD均为等边三角形,AB=2,
AC=
。
(1)求证:AO⊥平面BCD;(2)求二面角A—BC—D的大小;
(3)求O点到平面ACD的距离。
(本小题满分12分)设数列的通项公式为
. 数列
定义如下:对于正整数m,
是使得不等式
成立的所有n中的最小值.(1)若
,求
;(2)若
,求数列
的前2m项和公式;(3)是否存在p和q,使得
?如果存在,求p和q的取值范围;如果不存在,请说明理由.
(本小题满分12分)已知椭圆的中心在坐标原点,左顶点
,离心率
,
为右焦点,过焦点
的直线交椭圆
于
、
两点(不同于点
).(1)求椭圆
的方程;(2)当
时,求直线PQ的方程;(3)判断
能否成为等边三角形,并说明理由.
(本小题满分13分)设函数.(1)求
的最小正周期(2)若函数
与
的图像关于直线
对称,求当
时
的最大值.
(本小题满分13分)设函数.(1)求
的最小正周期(2)若函数
与
的图像关于直线
对称,求当
时
的最大值.