某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m.建立坐标系并写出该双曲线方程.
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有
.
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若
对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.
设函数
的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣
与集合F的关系;
(2)若E={1,2,a},F={0,
},求实数a的值.
(3)若
,F=[2﹣3m,2﹣3n],求m,n的值.
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b.
(1)求实数a,b的值.
(2)若复数z满足|
﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.
已知函数
,
.
(1)若
,求证:函数
是
上的奇函数;
(2)若函数
在区间
上没有零点,求实数
的取值范围.
已知命题
,命题
。
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“
”为真命题,“
”为假命题,求实数x的取值范围。