已知数列的通项公式是
,数列
是等差数列,令集合
,
,
.将集合
中的元素按从小到大的顺序排列构成的数列记为
.
(1)若,
,求数列
的通项公式;
(2)若,数列
的前5项成等比数列,且
,
,求满足
的正整数的个数.
已知椭圆:
的右焦点与抛物线
的焦点相同,且
的离心率
,又
为椭圆的左右顶点,
其上任一点(异于
).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交直线
于点
,过
作直线
的垂线交
轴于点
,求
的坐标;
(Ⅲ)求点在直线
上射影的轨迹方程.
已知函数(x≠0),各项均为正数的数列
中
,
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)在数列中,对任意的正整数
,
都成立,设
为数列
的前
项和试比较
与
的大小.
若定义在上的函数
同时满足以下条件:
①在
上是减函数,在
上是增函数; ②
是偶函数;
③在
处的切线与直线
垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在
,使
,求实数
的取值范围.
如图,在四棱锥中,四边形
为平行四边形,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若点为线段
的中点,求证:.
时维壬辰,序属仲春,值春耕播种时机,某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
日期 |
4月10日 |
4月11日 |
4月12日 |
4月13日 |
4月14日 |
温差x(oC) |
10 |
12 |
13 |
14 |
11 |
发芽数y(颗) |
11 |
13 |
14 |
16 |
12 |
(Ⅰ)从4月10日至4月14日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于14”的概率;
(Ⅱ)根据表中的数据可知发芽数y(颗)与温差x(oC)呈线性相关,请求出发芽数y关于温差x的线性回归方程.
(参考公式:回归直线方程式,其中
)