设椭圆C1的方程为(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P.
(1)试用a表示点P的坐标;
(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个. 设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式.
如图,设抛物线方程为 , 为直线 上任意一点,过 引抛物线的切线,切点分别为 .
(Ⅰ)求证:
三点的横坐标成等差数列;
(Ⅱ)已知当
点的坐标为
时,
,求此时抛物线的方程;
(Ⅲ)是否存在点
,使得点
关于直线
的对称点
在抛物线
上,其中,点
满足
(
为坐标原点).若存在,求出所有适合题意的点
的坐标;若不存在,请说明理由.
双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线
的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线:
与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得
?
② 是否存在这样的实数,使A、B两点关于直线
对称?若存在,求出
的值;若不存在,说明理由.
如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(I)求证:平面
;
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面
.
已知三次函数在
和
时取极值,且
.
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间
上的值域为
,试求
、n应满足的条件。
设是平面上的两个向量,且
互相垂直.
(1)求λ的值;
(2)若求
的值.