游客
题文

设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P.
(1)试用a表示点P的坐标;
(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个. 设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,设抛物线方程为 x 2 = 2 p y ( p > 0 ) , M 为直线 y = - 2 p 上任意一点,过 M 引抛物线的切线,切点分别为 A , B .

image.png

(Ⅰ)求证: A , M , B 三点的横坐标成等差数列;
(Ⅱ)已知当 M 点的坐标为 ( 2 , - 2 p ) 时, A B = 4 10 ,求此时抛物线的方程;
(Ⅲ)是否存在点 M ,使得点 C 关于直线 A B 的对称点 D 在抛物线 x 2 = 2 p y ( p > 0 ) 上,其中,点 C 满足 O C = O A + O B O 为坐标原点).若存在,求出所有适合题意的点 M 的坐标;若不存在,请说明理由.

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点.
(I)求证:平面
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面.

已知三次函数时取极值,且
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间上的值域为,试求、n应满足的条件。

是平面上的两个向量,且互相垂直.
(1)求λ的值;
(2)若的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号