(12分)已知AB是椭圆的一条弦,M(2,1)是AB的中点,以M为焦点且以椭圆E1的右准线为相应准线的双曲线E2与直线AB交于点. (1)设双曲线E2的离心率为,求关于的函数表达式; (2)当椭圆E1与双曲线E2的离心率互为倒数时,求椭圆E1的方程.
已知函数. (1)设,求函数的极值; (2)若,且当时,12a恒成立,试确定的取值范围
已知函f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)="f(x)+" f′\(x)是奇函数。 (1)求f(x)的表达式; (2)试论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值。
函数, ⑴求函数的单调区间和极值; ⑵若关于的方程有三个不同的实根,求实数的取值范围
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1. (1)试求常数a、b、c的值; (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号