双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1 , l 2 ,经过右焦点 F 垂直于 l 1 的直线分别交 l 1 , l 2 于 A , B 两点.已知 O A → , A B → , O B → 成等差数列,且 B F → 与 F A → 同向. (Ⅰ)求双曲线的离心率; (Ⅱ)设 A B 被双曲线所截得的线段的长为4,求双曲线的方程.
(注:) (1)求;(2)求的取值范围
(I)若能表示成一个奇函数和一个偶函数的和,求的解析式; (II)若命题P:函数在区间上是增函数与命题Q:.函数是减函数有且仅有一个是真命题求a的取值范围
(1)当时, 求的单调区间、极值; (2)求证:在(1)的条件下,; (3)是否存在实数,使的最小值是,若存在,求出的值;若不存在,说明理由
(1)求点M的轨迹C的方程; (2)设直线与曲线C恒有公共点,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号