双曲线的中心为原点
,焦点在
轴上,两条渐近线分别为
,经过右焦点
垂直于
的直线分别交
于
两点.已知
成等差数列,且
与
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设
被双曲线所截得的线段的长为4,求双曲线的方程.
(本小题满分14分) 已知函数图象上一点
处的切线方程为
.(Ⅰ)求
的值;(Ⅱ)若方程
在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数);(Ⅲ)令
,若
的图象与
轴交于
,
(其中
),
的中点为
,求证:
在
处的导数
.
(本小题满分12分)已知全集U = R,非空集合,
.(Ⅰ)当
时,求(∁U
)
;(Ⅱ)命题
,命题
,若
是
的必要条件,求实数
的取值范围.
设函数.
(1)若时函数
有三个互不相同的零点,求
的取值范围;
(2)若函数在
内没有极值点,求
的取值范围;
(3)若对任意的,不等式
在
上恒成立,求实数
的取值范围.
经过长期观测得到:在交通繁忙的时段内某公路汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量是多少(精确到0.1千辆/时)?
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应该在什么范围内?
设、b是满足
的实数,其中
.
(1)求证:;(2)求证:
.