已知直线经过直线2x+y-2=0与x-2y+1=0的交点,且与直线
的夹角为
,求直线
的方程.
如图,在正方体中,已知
是棱
的中点.
求证:(1)平面
,
(2)直线∥平面
;
一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.
如图,在直三棱柱中,
,
是棱
上的一点,
是
的延长线与
的延长线的交点,且
∥平面
。
(1)求证:;
(2)求二面角的平面角的余弦值;
(3)求点到平面
的距离.
如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.
(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体的体积。