已知点,
,
为原点.
⑴若点在线段
上,且
,求
的面积;
⑵若原点关于直线
的对称点为
,延长
到
,且
,已知直线
:
经过点
,求直线
的倾斜角.
(本小题满分13分)
已知函数
(I)求的最小值;
(II)讨论关于x的方程的解的个数;
(III)当
(本小题满分12分)
椭圆C的中心为坐标原点O,焦点在y轴上,短轴长为、离心率为
,直线
与y轴交于点P(0,
),与
椭圆C交于相异两点A、B,且
。
(I)求椭圆方程;
(II)求的取值范围。
如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角的正弦值.
(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(
月
日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提
前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
(注:毛利润
销售商支付给菜园的费用
运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求
的分布列和数学期望
;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
(本小题满分12分)
已知函数>0,
>0,
<
的图象与
轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为
和
(1)写出的解析式及
的值
;
(2)若锐角满足
,求
的值.