在如图(甲)所示的电路中,电阻R1和R2都是纯电阻,它们的伏安特性曲线分别如图(乙)中Oa、Ob所示。电源的电动势E=7.0V,内阻忽略不计。
(1)调节滑动变阻器R3,使电阻R1和R2消耗的电功率恰好相等,求此时电阻R1和R2的阻值为多大?R3接入电路的阻值为多大?
(2)调节滑动变阻器R3,使A、B两点的电势相等,这时电阻R1和R2消耗的电功率各是多少?
探月飞船进入地月转移轨道后关闭推进器,会依靠惯性沿地球与月球的连心线飞往月球。在飞行途中飞船中会经过一个特殊的点P,在这一点飞船所受到的地球对它的引力与月球对它的引力正好抵消(不考虑其他星体对飞船的引力作用)已知地球质量为M1,月球质量为M2,地球中心与月球中心之间的距离为 r.
(1)试分析在探月飞船靠惯性飞行到达P点的过程中,飞船的动能如何变化?飞船的加速度如何变化?
(2)P点距离地球中心多远?
(1)第一个液滴到达D板时的速度为多少?
(2)D板最终可达到多高的电势?
(3)设液滴的电荷量是A板所带电量的α倍(α=0.02),A板与B板构成的电容器的电容为C0=5×10-12F,E0=1000V,m=0.02g,h=d=5cm。试计算D板最终的电势值。(g=10m/s2)
(4)如果开关S不是始终闭合,而只是在第一个液滴形成前闭合一下,随即打开,其它条件与(3)相同。在这种情况下,设想第n滴液滴能落至D板,则当第n滴液滴刚刚下落的时刻,D板的电势多高?D板最终可达到多高的电势?
⑴匀强电场的场强E;
⑵AD之间的水平距离d;
⑶已知小颗粒在轨迹DP上某处的最大速度为vm,该处轨迹的
曲率半径是距水平面高度的k倍,则该处的高度为多大?
(1)物块A与B发生碰撞。
(2)物块A与B发生碰撞(设为弹性碰撞)后,物块B与档板P发生碰撞。
(3)物块B与档板P发生碰撞(设为弹性碰撞)后,物块B与A在木板C上再发生碰撞。
(4)物块A从木板C上掉下来。
(5)物块B从木板C上掉下来。
(1)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
(2)要使物体沿竖直方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?已知取无穷远处引力势能为零时,物体距星球球心距离r时的引力势能为:. (G为万有引力常量)