袋中有分别写着“团团”和“圆圆”的两种玩具共个且形状完全相同,从中任取
个玩具都是“圆圆”的概率为
,
、
两人不放回从袋中轮流摸取一个玩具,
先取,
后取,然后
再取,……
直到两人中有一人取到“圆圆”时即停止游戏.每个玩具在每一次被取出的机会是均等的,用
表示游戏终止时取玩具的次数.
(1)求时的概率;
(2)求的数学期望.
在△ABC中, 若I是△ABC的内心, AI的延长线交BC于D, 则有称之为三角形的内角平分线定理, 现已知AC=2, BC=3, AB=4, 且
, 求实数
及
的值.
设两向量满足
,
的夹角为60°,若向量
与向量
的夹角为钝角,求实数t的取值范围.
求函数的最大值及相对应的
的值.
已知向量=(1,2),
=(cosa,sina),设
=
+t
(
为实数).
(1)若a=,求当|
|取最小值时实数
的值;
(2)若⊥
,问:是否存在实数
,使得向量
–
和向量
的夹角为
,若存在,请求出t的值;若不存在,请说明理由.
(3)若⊥
,求实数
的取值范围A,并判断当
时函数
的单调性.
(本小题满分12分)
已知函数的图象与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求的解析式;
(2)若锐角满足
,求
的值.