在某校组织的一次篮球定点投篮训练中,规定每人最多投 次;在
处每
投进一球得
分,在
处每投进一球得
分;如果前两次得分之和超过
分即停止投篮,否则投第三次.同学在
处的命
中率
为
0,在
处的命中率为
,该同学选择先在
处投一球,以后都在
处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
(1)求
的值;
(2)求随 机变量
的数学期望
;
(3)试比较该同学选择都在
处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是半径OA的中点,求线段PC的长;
(2)设,求
面积的最大值及此时
的值.
设,函数
.
(1)若,求曲线
在点
处的切线方程;
(2)求函数的单调区间;
(3)当时,求函数
在
上的最小值.
已知椭圆的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆的方程;
(2)如图,、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
,设
的斜率为
,
的斜率为
,求证:
为定值.
在数列中,
,
,
对任意
成立,令
,且
是等比数列.
(1)求实数的值;
(2)求数列的通项公式;
(3)求和:.