城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 |
候车时间 |
人数 |
一 |
![]() |
2 |
二 |
![]() |
6 |
三 |
![]() |
4 |
四 |
![]() |
2 |
五 |
![]() |
1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
已知函数
(1)若,求在
图象与
轴交点处的切线方程;
(2)若在(1,2)上为单调函数,求
的范围.
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.
(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;
(Ⅱ)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为
,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区
是否达到“低碳小区”的标准?
|
|
已知
(Ⅰ)若,求
使函数
为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,
∈[-π,π]的
的集合。
已知函数,
.
(Ⅰ) 求函数在点
处的切线方程;
(Ⅱ) 若函数与
在区间
上均为增函数,求
的取值范围;
(Ⅲ) 若方程有唯一解,试求实数
的值.
已知椭圆.
(Ⅰ)设椭圆的半焦距,且
成等差数列,求椭圆
的方程;
(Ⅱ)设(1)中的椭圆与直线
相交于
两点,求
的取值范围.