(本小题满分14分)已知数列{}中,
(n≥2,
),
(1)若,数列
满足
(
),求证数列{
}是等差数列;
(2)若,求数列{
}中的最大项与最小项,并说明理由;
(3)(理做文不做)若,试证明:
.
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为
,且
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线
与椭圆
相交于
两点,且
的面积为
,求直线
的方程.
为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
班级 |
甲 |
乙 |
丙 |
丁 |
志愿者人数 |
45 |
60 |
30 |
15 |
为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率;
(2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用表示抽得甲班志愿者的人数,求
的分布列和数学期望.
如图五面体中,四边形为矩形,
,四边形
为梯形,
且,
.
(1)求证:;
(2)求此五面体的体积.
在中,角
,
,
的对边分别是
,
,
,其面积为
,且
.
(1)求;
(2)若,
,求
.
(本小题满分13分)己知函数
(1)若在区间
上是增函数,求实数
的取值范围;
(2)若是
的极值点,求
在
上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由