已知数列
,
,
,
.记:
.
求证:当
时,
1.
; 
2.
;
3.
.
(满分9分)如图,已知梯形中,
,
。求梯形的高.
(本题满分14分) 设函数.
(Ⅰ)当时,讨论函数
的单调性;
(Ⅱ)若函数仅在x=0处有极值,试求a的取值范围;
(Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分) 口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若
,求:
(1)n的值;
(2)X的概率分布与数学期望.
(本题满分14分) 已知为直线
,
及
所围成的面积,
为直线
,
及
所围成图形的面积(
为常数).
(1)若时,求
;
(2)若,求
的最大值.
(本小题满分14分)在二项式中有2m+n=0,如果它的展开式里最大系数项恰是常数项.
(1)求它是第几项;(2)求
的范围.