(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
在平面直角坐标系中,O为坐标原点,A、B、C三点满足
(1)求证:A、B、C三点共线;
(2)已知,
的最小值为
,求实数
的值.
函数是定义在
上的偶函数,当
时,
;当
时,
的图象是斜率为
,在
轴上截距为-2的直线在相应区间上的部分.
求的值;
写出函数的表达式,作出其图象并根据图象写出函数的单调区间.
对于函数。
(1)若在
处取得极值,且
的图像上每一点的切线的斜率均不超过
试求实数
的取值范围;
(2)若为实数集R上的单调函数,设点P的坐标为
,试求出点P的轨迹所形成的图形的面积S。
已知是定义在R上的函数,其图象交x轴于A,B,C三点,若点B的坐标为(2,0),且
在
和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)在函数的图象上是否存在一点M(x0,y0),使得
在点M的切线斜率为3b?若存在,求出点M的坐标;若不存在,说明理由;
对于函数。
(1)若在
处取得极值,且
的图像上每一点的切线的斜率均不超过
试求实数
的取值范围;
(2)若为实数集R上的单调函数,设点P的坐标为
,试求出点P的轨迹所形成的图形的面积S。