(本小题14分)已知函数,(为常数),若直线与和的图象都相切,且与的图象相切于定点. (1)求直线的方程及的值;(2)当时,讨论关于的方程的实数解的个数.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点. (Ⅰ)求椭圆的方程; (Ⅱ)当四边形面积取最大值时,求的值.
已知函数. (Ⅰ)求函数的极值; (Ⅱ)设函数,若函数在上恰有两个不同的零点,求实数的取值范围.
如图,在多面体中,平面,,且是边长为的等边三角形,,与平面所成角的正弦值为. (Ⅰ)若是线段的中点,证明:面; (Ⅱ)求多面体的体积.
已知且,函数,,记 (Ⅰ)求函数的定义域及其零点; (Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.
在中,分别是角的对边,为的面积,若,且. (Ⅰ)求的值; (Ⅱ)求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号