已知圆
,直线
.
(1)证明直线
与圆相交;(2)求直线
被圆
截得的弦长最小时,直线
的方程.
(本题满分12分)已知
是直线
上三点,向量
满足:
,且函数
定义域内可导。
(1)求函数
的解析式;
(2)若
,证明:
;
(3)若不等式
对
及
都恒成立,求实数
的取值范围。
(本题满分12分)在平面直角坐标系中,
的两个顶点
的坐标分别为
,平面内两点
同时满足一下条件:①
;②
;③
(1)求
的顶点
的轨迹方程;
(2)过点
的直线
与(1)中的轨迹交于
两点,求
的取值范围。
(本小题满分12分)已知数列
、
的前n项和分别为
、
,且满足
,
。
(Ⅰ)求
、
的值,并证明数列
是等比数列;
(Ⅱ)试确定实数
的值,使数列
是等差数列。
(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为
、
、
、
,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题个数记为
,求随机变量
的分布列和期望。