已知,且
,
,求
的值。
如图,在三棱柱 中, 平面 , ,点 分别在棱 和棱 上,且 为棱 的中点.
(Ⅰ)求证: ;
(Ⅱ)求二面角 的正弦值;
(Ⅲ)求直线 与平面 所成角的正弦值.
在
中,角所对的边分别为
.已知
.
(Ⅰ)求角 的大小;
(Ⅱ)求 的值;
(Ⅲ)求 的值.
已知 ,函数 ,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在
上有唯一零点;
(Ⅱ)记x0为函数在
上的零点,证明:
(ⅰ) ;
(ⅱ) .
如图,已知椭圆 ,抛物线 ,点 A是椭圆 与抛物线 的交点,过点 A的直线 l交椭圆 于点 B,交抛物线 于 M( B, M不同于 A).
(Ⅰ)若 ,求抛物线 的焦点坐标;
(Ⅱ)若存在不过原点的直线 l使 M为线段 AB的中点,求 p的最大值.
已知数列{an},{bn},{cn}中, .
(Ⅰ)若数列{bn}为等比数列,且公比 ,且 ,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差 ,证明: .