如图所示,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合,求形成的三棱锥的外接球的体积.
已知函数,
;
(Ⅰ)若函数在[1,2]上是减函数,求实数
的取值范围;
(Ⅱ)令,是否存在实数
,当
(
是自然对数的底数)时,函数
的最小值是
.若存在,求出
的值;若不存在,说明理由.
如图,在矩形中,
,点
在边
上,点
在边
上,且
,垂足为
,若将
沿
折起,使点
位于
位置,连接
,
得四棱锥
.
(Ⅰ)求证:;
(Ⅱ)若,直线
与平面
所成角的大小为
,求直线
与平面
所成角的正弦值.
设数列满足
,
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列
的前
项和
.
已知函数
(Ⅰ)若对任意,使得
恒成立,求实数
的取值范围;
(Ⅱ)证明:对,不等式
成立.
设点A(,0),B(
,0),直线AM、BM相交于点M,且它们的斜率之积为
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,
与圆
相交于P、Q两点,
与轨迹C相交于R、S两点,若|PQ|
求△
的面积的最大值和最小值(F′为轨迹C的左焦点).