设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).
如图,在四棱锥中,底面为直角梯形,,,平面底面,为中点,是棱PC上的点,. (1)求证:平面平面; (2)若点是棱的中点,求证:平面.
已知直线L经过点,且直线L在x轴上的截距等于在y轴上的截距的2倍,求直线L的方程.
函数在上是减函数,求实数的取值范围.
已知函数满足. (1)求的解析式; (2)对于(1)中得到的函数,试判断是否存在,使在区间上的值域为?若存在,求出;若不存在,请说明理由.
在中,已知. (1)判断的形状; (2)设O为坐标原点,,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号