如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.
(1)若D是BC的中点.求证:AD⊥CC1;
(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,
求证:截面MBC1⊥侧面BB1C1C.
(本小题满分14分)如图,在直三棱柱ABC—A1B1C1中,,
,
,
,点D在棱
上,且
∶
∶3
(1)证明:无论a为任何正数,均有BD⊥A1C;
(2)当a为何值时,二面角B—A1D—B1为60°?
(本小题满分13分)已知直线经过点A
,求:
(1)直线在两坐标轴上的截距相等的直线方程;
(2)直线与两坐标轴的正向围成三角形面积最小时的直线方程;
(3)求圆关于直线OA对称的圆的方程。
(本小题满分13分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本小题满分13分)已知函数在
时有极值,其图象在点
处的切线与直线
平行.
(1)求的值和函数
的单调区间;
(2)若当时,恒有
,试确定
的取值范围.
(本小题满分13分)设集合,
,若
。求实数a的取值范围。