设离散型随机变量X的概率分布为
X |
0 |
1 |
2 |
3 |
4 |
P |
0.2 |
0.1 |
0.1 |
0.3 |
m |
求:(1)2X+1的概率分布;
(2)|X-1|的概率分布.
已知函数
(Ⅰ)求
的单调区间;
(Ⅱ)记
在区间
(
)上的最小值为
令
.
(ⅰ)如果对一切
,不等式
恒成立,求实数
的取值范围;
(ⅱ)求证:
.
如图,椭圆
的一个焦点是
,
为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点
的直线
交椭圆于
、
两点,若直线
绕点
任意转动,值有
,求
的取值范围。
某项考试按科目
、科目
依次进行,只有当科目
成绩合格时,才可继续参加科目
的考试。已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。现某人参加这项考试,科目A每次考试成绩合格的概率均为
,科目
每次考试成绩合格的概率均为
,假设各次考试成绩合格与否均互不影响。
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为
,求
的数学期望
。
已知函数
。
(Ⅰ)设
是正数组成的数列,前
项和为
,其中
,若点
在函数
的图象上,求证:点
也在
的图象上;
(Ⅱ)求函数
在区间
内的极值。
如图,在四棱锥
中,则面
底面
,侧棱
,底面
为直角梯形,其中
,
为
中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求异面直线
与
所成角的大小;
(Ⅲ)线段
上是否存在点
,使得它到平面
的距离为
?若存在,求出
的值;若不存在,请说明理由.