某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提 出以下三种方案:
方案1:运走设备,此时需花费4 000元;
方案2:建一保护围墙,需花费1 000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60 000元,只有一条河流发生洪水时,损失为10 000元.
(1)试求方案3中损失费(随机变量)的概率分布;
(2)试比较哪一种方案好.
如图,四边形ABCD内接于圆,BD是圆
的直径,
于点E,DA平分
.
(1)证明:AE是圆的切线;
(2)如果,
,求CD.
已知函数,
.
(1)当时,证明:
;
(2)若,求k的取值范围.
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.
为了了解高一年级学生的身高情况,某校按10%的比例对全校800名高一年级学生按性别进行抽样检查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190] |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:男生身高频数分布表
身高(cm) |
[150,155) |
[150,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180] |
频数 |
2 |
12 |
16 |
6 |
3 |
1 |
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.
在斜三棱柱中,平面
平面ABC,
,
,
.
(1)求证:;
(2)若,求三棱锥
的体积.