游客
题文

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提 出以下三种方案:
方案1:运走设备,此时需花费4 000元;
方案2:建一保护围墙,需花费1 000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60 000元,只有一条河流发生洪水时,损失为10 000元.
(1)试求方案3中损失费(随机变量)的概率分布;
(2)试比较哪一种方案好.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2的进出口,如图所示。已知旧墙的维修费用为45元/,新墙的造价为180元/。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元) (Ⅰ)将表示为的函数;(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

在各项均为负数的数列中,已知,且,(1)求证:数列是等比数列,并求出通项公式。
(2)试问是否为该数列的项?若是,是第几项?若不是,请说明理由。

在锐角三角形ABC中,分别为角A、B、C 所对的边,且。(Ⅰ)确定角C的大小;(Ⅱ)若且△ABC的面积为,求的值。

(10分,每小题5分)
(1)在等差数列中,已知,求
(2)在等比数列中,已知,求

(本小题满分14分)
是定义在上的偶函数,又的图象与函数的图象关于直线对称,且当时,
(1)求的表达式;
(2)是否存在正实数,使的图象最低点在直线上?若存在,求出;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号