为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).
根据上面的叙述,试回答下列问题:
(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?
(2)上面三种抽取方式各自采用的是何种抽取样本的方法?
(3)试分别写出上面三种抽取方式各自抽取样本的步骤.
已知函数为偶函数, 且
(Ⅰ)求的值;
(Ⅱ)若为三角形
的一个内角,求满足
的
的值.
(本小题满分13分)
已知椭圆的离心率为
,椭圆短轴长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆
相交于
、
两点. ①若线段
中点的横坐标为
,求斜率
的值;②若点
,求证:
为定值。
(本小题满分13分)
已知函数,
(I)求的单调区间;
(II)求在区间
上的最小值。
(本小题满分13分)
某商场预计全年分批购入每台价值为2 000元的电视机共3 600台。每批都购入x台(x∈N*),且每批均需付运费400元。贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为。若每批购入400台,则全年需用去运输和保管总费用43 600元,
(1)求k的值;
(2)现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由。
(本小题满分12分)
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且.
(1)确定角C的大小;
(2)若c=,且△ABC的面积为
,求a+b的值。