已知二阶矩阵M有特征值=8及对应的一个特征向量e1=,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).求直线l:x-y+1=0在矩阵M的变换下的直线l′的方程.
已知a,b,c是全不相等的正实数, 求证.
已知:方程,若此方程表示圆 (1)求:的取值范围 (2)若(1)中的圆与直线相交于M、N两点,且OMON (O为坐标原点)求:的值。 (3)在(2)的条件下,求:以MN为直径的圆的方程。
是否存在角、使等式同时成立?若存在,求出的值; 若不存在请说明理由。
已知: (1)当有实数解时,求:实数a的取值范围; (2)若恒有成立,求:实数a的取值范围。
如图:已知矩形ABCD,PA平面ABCD,M、N分别是AB、PC的中点 (1)求证:MN∥平面PAD (2)求证: MNCD. (3)若 PDA=求证:MN 平面PCD.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号