已知在四棱锥
中,底面
是矩形,且
,
,
平面
,
、
分别是线段
、
的中点.
(1)证明:
;
(2)判断并说明
上是否存在点
,使得
∥平面
;
(3)若
与平面
所成的角为
,求二面角
的余弦值.
甲乙丙丁4人玩传球游戏,持球者将球等可能的传给其他3人,若球首先从甲传出,经过3次传球.
(1)求球恰好回到甲手中的概率;
(2)设乙获球(获得其他游戏者传的球)的次数为
,求
的分布列及数学期望.
如图,△ABC中.角A、B、C所对边的长分别为a、b、c满足c=l,
以AB为边向△ABC外作等边三角形△ABD.
(1)求∠ACB的大小;
(2)设∠ABC=
.试求函数
的最大值及
取得最大值时的
的值.
已知
.
(1)当
时,求
的最大值;
(2)求证:
恒成立;
(3)求证:
.(参考数据:
)
已知椭圆C的两个焦点是
)和
,并且经过点
,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F.
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求
的最小值.
设函数
,数列
满足
(1)求数列
的通项公式;
(2)对
,设
,若
恒成立,求实数
的取值范围.