抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.
(3)若直线x=-t(0<t<1=把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.
求曲线,
及
所围成的平面图形的面积.
汽车每小时54公里的速度行驶,到某处需要减速停车,设汽车以等减速度3米/秒刹车,问从开始刹车到停车,汽车走了多少公里?
求在上,由
轴及正弦曲线
围成的图形的面积.