如图所示,若四边形ABCD是一个等腰梯形,AB∥DC,M、N分别是DC、AB的中点,已知=a,
=b,
=c,试用a、b、c表示
,
,
+
.
、
、
为
的三内角,且其对边分别为a、b、c,若
,
,且
.
(1)求角;
(2)若,三角形面积
,求
的值.
对,不等式
所表示的平面区域为
,把
内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列:
(1)求,
;
(2)数列满足
,且
时
.证明当
时,
;
(3)在(2)的条件下,试比较与4的大小关系.
已知过定点
,圆心
在抛物线
:
上运动,
为圆
在
轴上所截得的弦.
⑴当点运动时,
是否有变化?并证明你的结论;
⑵当是
与
的等差中项时,
试判断抛物线的准线与圆
的位置关系,
并说明理由。
设的极小值为
,其导函数
的图像经过点
,如图所示,
(1)求的解析式;
(2)若对都有
恒成立,
求实数的取值范围。
如图,正三棱柱的底面边长为
,侧棱长为
,点
在棱
上.
(1)若,求证:直线
平面
;
(2)是否存在点,使平面
⊥平面
,若存在,请确定点
的位置,若不存在,请说明理由;
(3)请指出点的位置,使二面角
平面角的大小为
.