(本小题满分12分)已知,函数
.
(Ⅰ)当时,求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)在上单调递减,求的取值范围;
(Ⅲ)若函数f(x)在上单调递增,求的取值范围.
(本小题满分12分)为了了解2011年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 |
频数 |
频率 |
(3.9,4.2] |
3 |
0.06 |
(4.2,4.5] |
6 |
0.12 |
(4.5,4.8] |
25 |
x |
(4.8,5.1] |
y |
z |
(5.1,5.4] |
2 |
0.04 |
合计 |
n |
1.00 |
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
(本小题满分12分)已知直线过点
,圆N:
,
被圆N所截得的弦长为
.
(I)求点N到直线的距离;
(II)求直线的方程.
(本小题满分10分)若直线与直线
平行,且与坐标轴围成的三角形面积为16,求直线
的方程。
(本小题满分14分)
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)判断函数f(x)在
上的单调性;(2)是否存在实数
,使曲线y=g(x)在点x=x0处的切线与y轴垂直? 若存在,求出x0的值;若不存在,请说明理由.(3)若实数m,n满足m>0, n>0,求证:nnem≥mnen.
(本小题满分13分)已知A、B、C是椭圆
上的三点,其中点A的坐标为
,BC过椭圆m的中心,且
.
(1)求椭圆m的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且
.求实数t的取值范围.