(本小题满分12分)为了了解2011年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 |
频数 |
频率 |
(3.9,4.2] |
3 |
0.06 |
(4.2,4.5] |
6 |
0.12 |
(4.5,4.8] |
25 |
x |
(4.8,5.1] |
y |
z |
(5.1,5.4] |
2 |
0.04 |
合计 |
n |
1.00 |
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
在△ABC中,角A、B、C对边分别为a、b、c。求证:
函数是定义在
上的奇函数,且
.
(1)求实数的值.(2)用定义证明
在
上是增函数;
(3)写出的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值(无需说明理由)
某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数
的关系(如下图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出相应的销售单价.
函数是R上的偶函数,且当
时,函数的解析式为
(1)求的值;
(2)用定义证明在
上是减函数;
(3)求当时,函数的解析式;
已知集合
(1)当时,求
;
(2)若,求实数
的值.