某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
如图,是圆
的切线,切点为
,过
的中点
作割线交圆
于点
和
。求证:
已知曲线上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线的方程;
(2)设过的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.
如图,垂直于矩形
所在的平面,
分别是
的中点.
(I)求证:平面
;
(Ⅱ)求证:平面平面
.
向量=(a+1,sinx),
,设函数g(x)=
(a∈R,且a为常数).
(1)若a为任意实数,求g(x)的最小正周期;
(2)若g(x)在,上的最大值与最小值之和为7,求a的值.
已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值