某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
如图,已知抛物线:
,其上一点
到其焦点
的距离为
,过焦点
的直线
与抛物线
交于
左、右两点.
(1)求抛物线的标准方程;
(2)若,求直线
的方程.
已知椭圆:
的离心率为
,
是椭圆
的左焦点.
(1)求椭圆的方程;
(2)若直线与椭圆
相交于不同的两点
.且线段
的中点
在圆
上,求
的值.
已知的三个顶点的坐标为
.
(1)求边上的高所在直线的方程;
(2)若直线与
平行,且在
轴上的截距比在
轴上的截距大1,求直线
与两条坐标轴围成的三角形的周长.
已知函数,若函数
的最小值是
且对称轴是
,
.
(1)求的值;
(2)在(1)条件下求在区间
的最小值.
已知函数.
(1)证明是奇函数;
(2)判断的单调性,并用定义证明;
(3)求在[-1,2] 上的最值.