设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,]都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.
(1)求f()及f(
)
(2)证明:f(x)是周期函数;
(3)记an=f(2n+,求an.
已知都是正数,且
成等比数列,求证:
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为
,曲线C1,C2相交于A,B两点
(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(II)求弦AB的长度.
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,
,
AB=BC=3,求BD以及AC的长.
已知函数的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点
,使得
是以
为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.