已知抛物线的方程为,直线
的方程为
,点
关于直线
的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点
及抛物线与
轴两个交点的圆的方程;
(3)已知,点
是抛物线的焦点,
是抛物线上的动点,求
的最小值及此时点
的坐标;
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,
,点
、
、
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:面
;
(3)求点到平面
的距离.
下表是某市从3月份中随机抽取的天空气质量指数(
)和“
”(直径小于等于
微米的颗粒物)
小时平均浓度的数据,空气质量指数(
)小于
表示空气质量优良.
日期编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量指数(![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
“![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘
’的
小时平均浓度不超过
”,求事件
发生的概率.
在中,已知
,
且
.
(1)求角和
的值;
(2)若的边
,求边
的长.
已知函数,
(
为常数).
(1)函数的图象在点
处的切线与函数
的图象相切,求实数
的值;
(2)若,
,
、
使得
成立,求满足上述条件的最大整数
;
(3)当时,若对于区间
内的任意两个不相等的实数
、
,都有
成立,求
的取值范围.