游客
题文

圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为.  (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。

科目 数学   题型 解答题   难度 中等
知识点: 平面解析几何的产生──数与形的结合
登录免费查看答案和解析
相关试题

设函数,其中
(1)当时,时取得极值,求
(2)当时,若上单调递增,求的取值范围;
(3)证明对任意的正整数,不等式都成立。

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。

已知数列满足:

(Ⅰ)求的值及数列的通项公式;
(Ⅱ)设,求数列的前项和

已知斜三棱柱,,,在底面上的射影恰为的中点,又知.

(Ⅰ)求证:平面
(Ⅱ)求到平面的距离;
(Ⅲ)求二面角的大小。

某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)旅客候车时间的分布列;
(3)旅客候车时间的数学期望。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号