学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望 .
已知数列的前项和为. (Ⅰ)计算; (Ⅱ)根据(Ⅰ)所得到的计算结果,猜想的表达式,不必证明.
设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.
已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有;②;③若,则有成立. (1) 求的值;(2) 函数在区间[0,1]上是否同时适合①②③?并予以证明 (3) 假定存在,使得,且,求证:
求函数的最大值.
已知为正整数,试比较与的大小 .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号